
Time of Impact Dataset for Continuous Collision Detection and a
Scalable Conservative Algorithm
DAVID BELGROD, New York University, USA
BOLUN WANG, KAUST, Saudi Arabia
ZACHARY FERGUSON and XIN ZHAO, New York University, USA
MARCO ATTENE, IMATI - CNR, Italy
DANIELE PANOZZO, New York University, USA
TESEO SCHNEIDER, University of Victoria, Canada

Initial Con�guration Sweep and Prune Ours
t = 0.6 st = 0.6 s t = 10 s

Fig. 1. An approximate collision detection can lead to poor simulation results. We simulate this scene using Incremental Potential Contact [Li et al. 2020]
which provides an intersection-free guarantee, but approximate collision detection (either broad- or narrow-phase) can break this guarantee. Here we see
using an approximate broad-phase method (sweep and prune) results in missed collisions and intersections (see inset). In contrast, a conservative or exact
method allows the ball to squeeze through the rollers and come out the bottom.

We introduce a large-scale benchmark for broad- and narrow-phase continuous

collision detection (CCD) over linearized trajectories with exact time of im-

pacts and use it to evaluate the accuracy, correctness, and efficiency of 13

state-of-the-art CCD algorithms. Our analysis shows that several methods

exhibit problems either in efficiency or accuracy.

To overcome these limitations, we introduce an algorithm for CCD de-

signed to be scalable on modern parallel architectures and provably correct

when implemented using floating point arithmetic. We integrate our algo-

rithm within the Incremental Potential Contact solver [Li et al. 2021] and

evaluate its impact on various simulation scenarios. Our approach includes

a broad-phase CCD to quickly filter out primitives having disjoint bounding

boxes and a narrow-phase CCD that establishes whether the remaining

primitive pairs indeed collide. Our broad-phase algorithm is efficient and

scalable thanks to the experimental observation that sweeping along a co-

ordinate axis performs surprisingly well on modern parallel architectures.

For narrow-phase CCD, we re-design the recently proposed interval-based

algorithm of Wang et al. [2021] to work on massively parallel hardware.

To foster the adoption and development of future linear CCD algorithms,

and to evaluate their correctness, scalability, and overall performance, we

release the dataset with analytic ground truth, the implementation of all the

algorithms tested, and our testing framework.

CCS Concepts: • Computing methodologies → Collision detection;
Physical simulation.

Authors’ addresses: David Belgrod, db2762@nyu.edu, New York University, USA; Bolun

Wang, bolun.wang@kaust.edu.sa, KAUST, Saudi Arabia; Zachary Ferguson, zfergus@

nyu.edu; Xin Zhao, xz3752@nyu.edu, New York University, USA; Marco Attene, marco.

attene@cnr.it, IMATI - CNR, Italy; Daniele Panozzo, panozzo@nyu.edu, New York

University, USA; Teseo Schneider, teseo@uvic.ca, University of Victoria, Canada.

Additional Key Words and Phrases: Collision Detection and Response

1 INTRODUCTION
Continuous collision detection (CCD) is used extensively in graphics,

engineering, and scientific computing for the simulation of rigid and

deformable objects, and in geometry processing to ensure that self-

intersections are not introduced in parameterization or deformation

applications. Objects are typically represented by triangle meshes. In

this work, we focus on the common case where mesh vertices move

along linear trajectories. Hence, collisions can occur either when

an edge hits another edge or when a vertex hits a triangle [Wang

et al. 2021].

CCD is usually divided into two steps: (1) broad-phase, which is

a conservative filter that identifies candidate colliding pairs, and (2)

narrow-phase, which validates each pair with an accurate and more

computationally intensive algorithm. While the narrow-phase is

local and involves only a pair of primitives, the broad-phase usually

relies on acceleration data structures to prune unnecessary pairs

and avoid the quadratic complexity of a brute-force evaluation on

all possible pairs. Both problems have been extensively studied in

graphics, engineering, and scientific computing in the last three

decades (Section 2). An ideal linear CCD algorithm takes the start

and end points of a linear trajectory and determines if, at any point

along the trajectory, the geometries intersect and, if they do, it

tells us at which time the first collision happens. This might seem a

trivial requirement for a CCD algorithm; however,Wang et al. [2021]

ar
X

iv
:2

11
2.

06
30

0v
4

 [
cs

.G
R

]
 1

3
A

ug
 2

02
3

2 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

show that many popular narrow-phase CCD implementations are

not correct (Figure 1). Ensuring that an implementation is correct

is a subtle and surprisingly difficult challenge since most of the

intermediate computations use floating-point numbers, while the

corresponding algorithms and their proof of correctness usually

disregard floating-point rounding errors.

Two-Pronged Evaluation Approach. Validating the correctness of

algorithms implemented in floating-point is a major challenge, es-

pecially when multiple operating systems and architectures are

considered. Indeed, floating-point computations might slightly dif-

fer due to either hardware specifics or modern compilers trying to

reorder operations to improve performance. This makes it challeng-

ing to have correct code and especially hard to keep it up to date

as compilers and architectures evolve. To provide a way to validate

an implementation on a specific system, we have collected a large

dataset of CCD queries evaluated using exact computations (Sec-

tion 4), and we provide a large statistical experimental validation of

several methods. Differently from other CCD datasets [Serpa and

Rodrigues 2020; Wang et al. 2021], we generate ground truth time
of impact for each successive pair of frames from each scene, using

a combination of symbolic computation and conservative filtering.

This allows us to evaluate CCD as a whole, with broad and narrow

phases coupled, and measure how conservative the methods are.

Evaluation. We use exact computation to evaluate the correctness

of 13 broad phase algorithms on a large dataset (Section 5). To our

surprise, most of the implementations are incorrect (even if the

methods described in the papers are when implemented with exact

arithmetic) and miss collisions, making them unusable for interior

point optimization.

Broad-Phase. The broad-phase of a CCD algorithm usually aims at

detecting collision between (axis-aligned) boxes around primitives.

Several existing methods simplify the problem by either check-

ing for collisions only at the end of the time interval (i.e., discrete

collision detection) or by assuming that only a small fraction of

the scene moves. These simplifications allow for faster algorithms

but may lead to unrealistic results when dealing with elastic bodies.

Many acceleration data structures exist (e.g., hash grids, spatial trees,

bounding volumes hierarchies) to avoid checking “far away” boxes,

each providing different advantages in different situations. However,

most of these structures are complex to parallelize, in particular

on graphics processing units (GPUs) where dynamic memory allo-

cation is not an option. Additionally, these structures’ complexity

makes it hard to verify and ensure correctness when using floating-

point computations. In our work, we discovered that the simplest

strategy, sweep along the most varying principal axis, is the most

effective on GPUs. The algorithm requires only a parallel sort for

the sweep, then every GPU core will compare pairs of boxes. This

strategy is not only massively parallel, but it is also trivial to en-

sure correctness: the only computation performed on the boxes is a

comparison between floating-point numbers, which is exact.

Narrow-Phase. Snyder et al. [1993] introduced a conservative

narrow-phase CCD algorithm that properly handles numerical er-

rors by employing interval arithmetic. Tight-Inclusion (TI) CCD [Wang

et al. 2021] used a similar idea and developed a faster CCD method

by replacing intervals with inclusion predicates. Unfortunately, TI

cannot be directly translated to GPU as it contains several branches,

dynamic allocation, and high register use
1
. We propose a novel algo-

rithm based on the same idea as TI, redesigned to be GPU friendly.

Contributions. In our work, we introduce a dataset for CCD on

linearized trajectories of five scenes obtained from different simu-

lators containing between 50 thousand to half a million primitives

(i.e., vertex-face and edge-edge). For every successive pair of frames,

we compute the ground truth Boolean result and time of impact

using a symbolic solver [Wolfram Research Inc. 2020]. We use this

dataset to validate the output of several CCD algorithms.

Additionally, we introduce a novel GPU CCD implementation.

Given two meshes for the start and end of a step, our method returns

the time at which the impact occurs. Our pipeline includes the novel

parallel broad-phase algorithm we call Sweep and Tiniest Queue as
well as a GPU-friendly variant of the TI algorithm.

2 RELATED WORK
We present an overview of existing CCD datasets and the broad-

and narrow-phase collision detection algorithms benchmarked in

our study. We refer to [Serpa and Rodrigues 2020] for a detailed

review of broad-phase algorithms and to [Wang et al. 2021] for

narrow-phase algorithms.

2.1 Datasets
The UNC Dynamic Scene Benchmarks [Curtis et al. 2012] features

keyframes from simulation data and is commonly used throughout

collision detectionworks as a source of benchmark data. This dataset

covers a variety of simulation methods, materials (e.g., deformable

and rigid), and physics (e.g., cloth and fracturing solids). We borrow

three scenes (cloth-funnel, cloth-ball, and n-body simulation) from

this dataset. We enrich these scenes with ground truth Boolean

results and symbolic time of impacts which was not included in the

original dataset.

Serpa and Rodrigues [2020] benchmark several classic broad-

phase collision detection algorithms. In doing so, they provide

not only reference implementations of these algorithms but also

a benchmarking framework and procedurally generated scenarios.

These benchmark scenes focus on simple primitives (e.g., cubes

and spheres) in free fall or undergoing random rigid motion. In

contrast, we focus on the more general case of deformable triangle

meshes. Serpa and Rodrigues [2020] focuses primarily on static col-

lision detection, while our work evaluates broad-phase methods on

continuous collision detection scenarios.

Wang et al. [2021] introduced a large scale dataset for narrow-

phase CCD algorithms. The dataset is designed to cover common

cases extracted from simulation scenarios and challenging degener-

ate cases. Wang et al. [2021] uses the dataset to evaluate the accu-

racy (the number of false positives), correctness (the number of false

negatives), and efficiency (the average runtime) of different narrow-

phase CCD algorithms. However, the large-scale dataset proposed

by Wang et al. [2021] contains only the queries and the ground

truth Boolean results, but not the collision time for each query. We

1
On modern GPU architectures, the number of registers per core is extremely limited,

and this puts a limit on how many local variables can be used in every function.

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 3

propose a new benchmark dataset of over 4M collisions combined

with their time of impact (Section 4). This allows us to evaluate the

accuracy of different methods in addition to their correctness.

2.2 Broad-Phase
We discuss the 12 methods benchmarked in [Serpa and Rodrigues

2020] and additionally include the spatial hash data structure used

in [Li et al. 2020]. We note that broad phase methods can be used

for both static or continuous collision detection by just changing

the geometric proxies used: instead of building a proxy, such as a

bounding box, around a static object, it is possible to build the proxy

around the linearized trajectory in a time-step. Their performance

is, however, very different in these two settings due to the much

larger number of overlaps in the continuous collision detection case.

BF. A simple CPU parallel brute-force check where every box in

the list is checked against every other box. To avoid any concur-

rent accesses to the resulting candidates, we use a synchronized

vector [Dagum and Menon 1998], and the algorithm is accelerated

using Advanced Vector Extensions (AVX) instructions. This algo-
rithm is simple, but its complexity is 𝑂 (𝑛2), with 𝑛 the number of

primitives: it is not practical for large scenes, but it is viable for

smaller ones.

SAP. A serial and parallel standard implementation of the sweep
and prune algorithm [Baraff 1992; Capannini and Larsson 2016a,b,

2018]: it starts by performing an intersection check between the

𝑥-axes of the boxes by sorting the boxes along 𝑥 . For every 𝑥-

intersecting box, the algorithm proceeds by checking 𝑦 and 𝑧, every

time sorting and pruning the axis. This algorithm improves over the

simple brute force as its complexity is 𝑂 (𝑛 log(𝑛)). SAP comes also

with an OpenCL GPU implementation from Bullet 3 [Coumans and

Bai 2019] based on [Liu et al. 2010]. Note that we cannot provide a

full comparison with the reference implementation because of the

incomplete state of their code.

iSAP. A serial implementation of incremental sweep and prune
algorithm [Coumans and Bai 2019]. It is an improvement over SAP:

For every intersecting box along the 𝑥-axis, the pair of overlapping

boxes is added to a list. Three lists are built to keep track of inter-

secting boxes along all three axes: 𝑥 ,𝑦, and 𝑧. Finally, a pass through

all three arrays is done to find pairs of boxes that intersect along all

three axes.

Grid. The scene is divided into voxels (or cells) of uniform size

𝑣 . The voxel size 𝑣 is chosen based on a target number of boxes

per voxel (we use the default: 200 boxes per voxel). Every input

bounding box is assigned to the cells intersecting it. We detect

intersections between boxes by iterating over the sparse cells. This

algorithm is efficient and easily parallelizable (on both CPU and

GPU); however, its main disadvantage is the choice of 𝑣 : a small

𝑣 will lead to many boxes, and an explosion in memory due to

duplicate collision candidates, and a large 𝑣 leads to many boxes

inside each cell (e.g., if there is only one voxel the grid reduces to

brute force (BF)). The choice of 𝑣 is particularly problematic for

large displacements. For instance, if the objects are moving apart,

the grid (and the number of boxes) will grow in size, potentially

leading to an exploding number. For the GPU algorithm, we use the

OpenCL parallel implementation based on Bullet [Coumans and Bai

2019]. We note that it requires the same delicate choice of 𝑣 that is

even exacerbated as GPUs have less memory than CPUs.

GSAP. This method is similar to the Grid method, but uses a

sweep and prune (SAP) inside each cell instead of a brute force

check. It suffers from similar issues as Grid: A small 𝑣 will result

in many duplicate candidates and large memory usage, but, unlike

Grid, a large 𝑣 reduces to SAP and is, therefore, more efficient than

Grid’s BF comparisons.

SH. A parallel CPU implementation of Grid, that encodes the grid

implicitly using a spatial hashing function [Li et al. 2020; Tang et al.

2018a,b]. Each candidate box is rasterized in the grid, and for each

voxel, a hash value is computed. These hash values are used to store

the elements IDs in a hash map (mapping from voxel indices to a

vector of element IDs contained inside the voxel). The candidate

collisions can then be found by rasterizing the query element and

looking up the voxel indices. Our implementation is based on the

code from [Li et al. 2020], which has been modified to produce all

collision candidates in one parallel loop and include axis-aligned

bounding box checks of elements, to make it comparable with the

other approaches. This algorithm has the same shortcomings as

Grid: a wrong choice of 𝑣 might lead to either slow performances

or excessive memory usage. We use a heuristic for the voxel size

equal to two times the maximum of the average edge lengths and

the average displacement length. This ensures the average element

fits within a single voxel.

BVH. A bounding volume hierarchy. The boxes are divided into

two sets: query and target. The target queries are sorted using

Morton encoding to optimize spatial locality. The sorted boxes are

grouped into pairs, each forming a larger box. By recursively iter-

ating the process, we obtain a binary tree, where the root is a box

containing the whole space-time scene. Every query box traverses

the tree by recursively checking its intersection with the box at

the tree’s node until it reaches the leaf. The BVH can be updated

“bottom-up” (i.e., if a leaf box grows, it can update its parent until

the root), dramatically reducing the update cost in dynamic scenes.

We use a deferred BVH (DBVT-D), which performs a single tree-tree

query. Additionally, Bridson et al. [2002] proposes to use numerical

tolerances to account for rounding error in floating-point compu-

tation, which we also apply to all methods we compare against to

mitigate (but as we will show in Section 5 not reliably address) the

effect of rounding errors. We also include an OpenCL GPU imple-

mentation of the Linear BVH in Bullet [Coumans and Bai 2019].

Similar to the BVH, the tree is organized using Morton encoding. By

default, Serpa and Rodrigues [2019] assumes a maximum of 18𝑛 pos-

sible intersections, with 𝑛 input bounding boxes, and discards any

successive one. Changing the default size for all our scenes required

a trade-off between performance for smaller scenes in exchange for

more collisions in larger scenes. To avoid this unnecessary short-

coming, which introduces false negatives, we changed the algorithm

to process all intersections in an appropriate amount of time: If the

list of candidates reaches the maximum, we stop storing them and

count their number. Once we know the total number of candidates,

4 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

we re-execute the algorithm with the correct preallocated size. This

change affects only a few cases where the number of candidates

exceeds 18𝑛.

KDT. An optimized KD-Tree designed to handle static scenes

based on the efficient implementation in [Serpa and Rodrigues 2019].

The spatial subdivision is designed to adaptively partition the space

and have a small number of boxes attached to each cell. We note that

when using the automatic box inflation present in the implementa-

tion [Serpa and Rodrigues 2019], the algorithm does not report any

collision (i.e., it fails to detect true positives). We thus alter the code

to disable this feature and use our default 1% inflation, which leads

to reasonable results suggesting a bug in the auto inflation code.

Tracy. The parallel method of Tracy et al. [2009], which builds

off the incremental SAP of Baraff [1992] and Cohen et al. [1995] by

including the ability to insert AABBs without the need to perform

a full sort of the axes.

CGAL. The CGAL implementation of an interval-tree SAP algo-

rithm designed to handle 𝑑-dimensional axis-aligned boxes (in our

experiments, we use 𝑑 = 3) [Kettner et al. 2016; Zomorodian and

Edelsbrunner 2000]. This method works by using SAP on the first

axis and then using range and interval trees on the subsequent axes.

2.3 Narrow-Phase
Numerical Root-Finding. Narrow-phase CCD can be reduced to

root-finding: the roots of a carefully designed function correspond

to the times of impact. CCD of linear trajectories without minimal

separation equates to finding the roots of a cubic polynomial [Provot

1997]. Many methods focus on solving these cubic polynomials

using numerical methods [Provot 1997]. Provot [1997] introduce

the most common strategy of finding a time of coplanarity and then

performing an inside check. This idea has since been expanded to

solve both rigid [Kim and Rossignac 2003; Redon et al. 2002] and

deformable collisions [Bridson et al. 2002; Hutter and Fuhrmann

2007; Tang et al. 2011].

The downside of these methods is that they assume infinite preci-

sion. When implemented using floating-point numbers, these meth-

ods can both miss collisions (false negatives) and report non-existent

collisions (false positives).

Inclusion-Based Root-Finding. Alternatively to numerical root-

finding algorithms, some propose using inclusion-based root-finding

algorithms to determine if a root exists in the co-domain of our func-

tion with some tolerance [Redon et al. 2002; Snyder 1992; Snyder

et al. 1993; Von Herzen et al. 1990; Wang et al. 2021]. This can either

be done using interval arithmetic [Snyder 1992] or by designing cus-

tom inclusion functions [Wang et al. 2021]. The latter has the benefit

of producing tighter inclusion functions than general interval arith-

metic and can be performed in floating-point with specially crafted

error bounds. These methods avoid false negatives but produce false

positives, which add extra numerical padding to simulated objects

and can result in worse convergence when used in line-search-based

implicit solvers.

Conservative Advancement. Originally introduced for CCD be-

tween rigid convex objects [Mirtich 1996], conservative advance-

ment incrementally estimates the time of impact through a series

of minimum distance queries. This work has been subsequently

extended to non-convex [Zhang et al. 2006], articulated [Zhang et al.

2007], and polygon-soup models [Tang et al. 2009]. Most notably,

in the context of this work, Tang et al. [2010] proposed a method

of “Local Advancement” for CCD between deformable triangles.

Li et al. [2021] propose a conservative advancement method for

CCD between triangles. They claim numerical robustness as they

attempt to conservatively underestimate the time of impact. As this

work postdates the benchmark and analysis done by Wang et al.

[2021], we investigate here their claims and determine if it is a viable

alternative to the TI algorithm of Wang et al. [2021]. As shown in

Section 5.2, the reference implementation provided by the authors

misses collisions. We speculate that this is due to floating-point

rounding errors in distance computations (involving square roots),

which make the CCD algorithm in Li et al. [2021] not conservative

and thus unsuitable for interior point optimization.

Exact Methods. Both Brochu et al. [2012] and Tang et al. [2014]

introduce exact root-parity CCD methods. Root parity is insufficient

for CCD, as it cannot distinguish between 0 or 2 collisions within a

timestep. In addition, their algorithm is not handling certain corner

cases, making the root parity check not exact [Wang et al. 2022,

2021].

The only method exact CCD method we are aware of is using

symbolic root finding [Wolfram Research Inc. 2020]. Unfortunately,

this is computationally expensive (seconds for each query) and

thus impractical in a simulation setting. We use the ground truth

generated by this method to verify the results of all queries used in

this work.

3 PRELIMINARIES
We formally introduce the CCD problem and classifications of CCD

algorithms, which we will use in our evaluation. A CCD algorithm

considers a scene with objects (typically triangles) moving from

an initial position at time 𝑡 = 0 to a final position at time 𝑡 = 1. If

two objects intersect during the movement, the algorithm should

report COLLISION and return the time 𝑡★ ∈ [0, 1] at which such a

collision occurs (𝑡★ = ∞ if there are no collisions). As mentioned,

algorithm implementations may not be robust. If an algorithm re-

ports COLLISION but no pair of objects actually intersect, we call

the report a false positive. When an intersection actually occurs, but

the algorithm does not report COLLISION, we call the report a false
negative.

Definition 3.1. A CCD algorithm (or implementation of a CCD

algorithm) is exact if it reports COLLISION if and only if the geome-

tries intersect.

Hence, an exact algorithm never reports false positives and/or

negatives. This property can be achieved using exact or symbolic

calculations as explained in Section 4, though this is intractably

slow in real applications. Nonetheless, most algorithms can tolerate

few false positives; thus, we introduce a new definition.

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 5

Definition 3.2. A CCD algorithm (or an implementation of a CCD

algorithm) is conservative if, when the geometries intersect, it reports

COLLISION.

Therefore, a conservative algorithm never reports false negatives

but may report false positives. This property is fundamental when

false negatives cannot be tolerated, such as in a new trend of contact

models and corresponding simulators [Ferguson et al. 2021; Li et al.

2020, 2021] which guarantee (and also assume), by construction,

that no interpenetrations are present in the scene at any moment

in time. These algorithms provide robust and accurate modeling

of contact but are unable to tolerate CCD imprecision: if a CCD

query misses a collision, a self-intersection will appear, breaking the

assumption of a self-intersection-free state and thus prevents the

simulation from terminating (Figure 1). This imprecision includes

floating-point rounding errors, which need to be accounted for

in a conservative CCD algorithm. For this class of algorithms, we

measure their accuracy (i.e., we measure how close they are to be

exact) by counting the number of false positives they produce.

Not all contact models require conservative CCD. In some cases,

for instance, the model introduces contact forces to remove inter-

sections between primitives. Since the forces are introduced after a

collision to remove the intersections, small numerical errors in the

CCD queries are unlikely to affect the overall simulation, and it is

thus common to sacrifice numerical guarantees in the CCD algo-

rithm, favoring approximations that lead to a lower computation

cost.

Definition 3.3. A CCD algorithm (or an implementation of a CCD

algorithm) is approximate if, most of the time, it reports COLLISION
when the geometries intersect; however, some collisions may be

missed.

In this case, it is important to measure both false positives (to see

how close to exact they are) and false negatives (to ensure that only

a few collisions are missed).

4 DATASET GENERATION
Our dataset is composed of five simulated scenes (Figure 2 top row)

and the corresponding ground truth data for continuous collisions

between frames. From the UNC Dynamic Scene Benchmark [Curtis

et al. 2012], we include two co-dimensional cloth simulations with a

large number of self-collisions (Cloth-Ball and Cloth-Funnel) and a

simulation of a large number of rigid spherical bodies (N-Body). We

also include two elastodynamic scenes featuring large compression

and nonlinear buckling simulated using themethod of Li et al. [2020]

(Armadillo-Rollers and Rod-Twist).

Ground Truth. We generate ground truth for each successive pair

of frames from each scene, using a combination of symbolic com-

putation and conservative filtering. While this might seem similar

to the dataset of narrow-phase ground truth introduced by Wang

et al. [2021], they only provide a set of queries with no global mesh,

nor are the queries separated by time step. Therefore, the dataset

of Wang et al. [2021] is only suited for evaluating narrow-phase

CCD algorithms, and this necessitates introducing a new dataset to

evaluate broad-phase methods or CCD as a whole.

We first enumerate all possible collision pairs (collision candi-

dates) through a brute-force approach. We only consider point-

triangle and edge-edge pairs as these pairs capture the first colli-

sions between triangles [Provot 1997] (not including points that are

vertices of the triangles and edges that share a common endpoint).

For each collision candidate, we determine if the pair collides using

the provably conservative CCD of Wang et al. [2021]. While this

CCD algorithm is guaranteed to not have false negatives, it may

produce false positives. To eliminate false positives, we find the

exact Boolean solutions of the CCD query using the symbolic solver

in Mathematica [Wolfram Research Inc. 2020]. Mathematica uses

symbolic computations combined with exact arithmetic to produce

a symbolic expression for the time of impact. We use Mathematica’s

exact predicate computation to determine if this is a valid time of

impact (𝑡 ∈ [0, 1]) and, therefore, a collision.
While we could skip the middle step and directly use the symbolic

CCD, this would be prohibitively slow, as the symbolic solvers take

several seconds per query. Instead, the method of Wang et al. [2021]

quickly filters the majority of the collision pairs, leaving a smaller

number of candidates to validate with the symbolic solver.

Time of Impact Expressions. In addition to the Boolean ground

truth, our dataset is the first to include the symbolic expressions for

the valid roots (as Wolfram Language MX files). It is necessary to

save the symbolic expressions (instead of a real or rational number)

as they may include operators and functions that cannot be evalu-

ated exactly using floating point or rational numbers (e.g., square

roots). For example, Equation (1) shows that Mathematica stores

the time of impact as the roots of a cubic polynomial which can

be solved analytically (e.g., by using Cardano’s method [Cardano

1545]) but requires irrational and complex arithmetic.

𝑡 = Root(32438097225180438401964874473761976929223𝑥3

− 2546681458666122439357688750343089434416006𝑥2

+ 2471187477357729479707126378291971630585896𝑥
− 266132451806881357156163391768279366354706, 2)

(1)

In total, this includes over 3.3M edge-edge and 728K vertex-face

contacts. For reproducibility, we provide scripts to rerun the valida-

tion on other architectures and compilers.

5 COMPARISON
We run all our experiments on anAMDRyzen™Threadripper™ PRO

3995WX 64-Cores @ 2.7GHz processor with 64 threads, 512GB of

RAM, and an NVIDIA
®
3080 Ti. Note that, to avoid duplicated plots,

we include the results of our method; we refer to Section 6 for a

detailed explanation of what it does and to Section 7 for a discussion.

The BVH method provides a function to update the data structure

with new positions instead of rebuilding it from scratch at every

frame, which we use in our experiments. For all other methods, the

acceleration data structure is rebuilt at each frame.

5.1 Broad-Phase
Figure 3 presents detailed statistics of twelve implementations of a

broad-phase collision detection algorithm run on our benchmark

6 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

Armadillo-Rollers

𝑉 + 𝐸 + 𝐹 = 72,740

Cloth-Ball

𝑉 + 𝐸 + 𝐹 = 277,653

Cloth-Funnel

𝑉 + 𝐸 + 𝐹 = 55,864

N-Bodies

𝑉 + 𝐸 + 𝐹 = 440,280

Rod-Twist

𝑉 + 𝐸 + 𝐹 = 239,600

Squishy Ball

𝑉 + 𝐸 + 𝐹 = 3,192,650

Fig. 2. Overview of the six scenes in our dataset.

scenes. For each broad-phase method, we compare the list of can-

didates with the ground truth data. We report the number of false

positives (collisions detected by the method but are not colliding)

and false negatives (collisions not detected by the method but are

colliding), as well as the running time and maximal memory usage.

The number of false positives is quite stable among the methods,

with a lower number for the Grid-based and the BVH-based ap-

proaches. All methods use a similar amount of memory, except for

the BVH (for small scenes) and Tracy (for medium scenes). We note

that for SH, memory (and runtime) vary heavily based on the choice

of the grid size (Appendix A). The runtime varies significantly across

the different methods, but the parallel SAP, SH, and GPU BVH are

faster.

Since the goal of a broad-phase CCD is to filter unnecessary colli-

sion pairs, it is expected to introduce false positives, but it should

be conservative; that is, it should never have false negatives. In our

experiments, despite inflating the bounding boxes by 1% to amelio-

rate numerical problems, we found that the public implementations

we use of GSAP, GpuGrid, GpuSAP, KDT, SAP, and CGAL have

false negatives
2
. The false negatives produced by the GpuGrid and

GpuSAP methods are at least in part due to the implementation

choice of allocating a fixed-size array for candidates and ignoring

any additional candidates. We believe that it is the case, as these

methods are designed for rigid bodies where the number of boxes

is proportional to the number of objects in the scene (typically not

above tens of thousands), while for deformable bodies, the number

of boxes depends on the complexity of the surface (i.e., one box

per triangle, edge, and vertex) leading to a much larger number of

boxes (the smallest scene in our dataset has 50 thousand boxes).

This problem could be fixed by a more complex and less efficient

implementation.

5.2 Narrow-Phase
For each narrow-phase algorithm, we only record the time of impact

for the whole timestep. For the narrow-phase, we compare only with

the original CPU TI [Wang et al. 2021] and the Additive CCD (ACCD)

method of Li et al. [2021] as it has been shown that other existing

algorithms are either not conservative or produce a large number

of false positives [Wang et al. 2021, Table 1]. Table 1 summarizes

the results and shows that ACCD is not conservative: as with many

2
Note that CGAL box_self_intersection_d is fast but has a bug. The

box_self_intersection_all_pairs_d method is correct, but its quadratic complex-

ity makes it intractable.

Table 1. Average narrow-phase runtime (milliseconds), total number of false
positives (in thousands), and total number of false negatives for ACCD, TI,
and ours on GPU.

Scene Method Runtime (ms) FP (1K) FN

Armadillo-Rollers

ACCD 2 8594 0

TI 32 8594 0

Ours 7 8594 0

Cloth-Ball

ACCD 7 18637 0

TI 103 18637 0

Ours 15 18637 0

Cloth-Funnel

ACCD 1 2995 2470

TI 12 3417 0

Ours 5 3417 0

N-Bodies

ACCD 150 232991 258080

TI 402 232965 0

Ours 46 232965 0

Rod-Twist

ACCD 4 457479 0

TI 195 457479 0

Ours 24 457479 0

other CCD methods, ACCD focuses on performance at the cost of

correctness.

6 ALGORITHM
Our CCD algorithm for triangle meshes, summarized in Algorithm 1,

takes as input two triangle meshes𝑀0, 𝑀1 whose vertex positions

are given at time 𝑡 = 0 and 𝑡 = 1 and are assumed to move along

linear trajectories in between. The algorithm returns the earliest

time of impact 𝑡★ (𝑡★ = ∞ if there are no collisions between 𝑀0

and 𝑀1). Vertex coordinates are represented using floating-point

numbers. Our parallel algorithm is implemented both on GPU and

CPU and strives to vectorize the computations.

Our broad and narrow phase algorithms are inspired by the results

(Section 5): for broad phase, the SAP algorithms are among the

fastest and simplest (we exclude SH as its runtime depends on the

grid size, Figure 14), and only TI is conservative for the narrow

phase. Thus we develop our algorithm on their core principle while

redesigning it to target vectorized architectures and flexible memory

management.

Overview. We first build a set 𝐵 = {𝑏𝑖 | 𝑖 = 1, . . . , 𝑘} of 𝑘 boxes

𝑏𝑖 = (𝑏𝑚𝑖 , 𝑏𝑀
𝑖
) (where 𝑏𝑚

𝑖
and 𝑏𝑀

𝑖
are the minimum and maximum

corner of the box respectively) on CPU around every moving primi-

tive (triangles, edges, and vertices at both 𝑡 = 0 and 𝑡 = 1) on 𝑀0

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 7

Fig. 3. Results of the 13 different methods for our six different scenes (columns). For each scene (Figure 2), we report the performance for every simulation
frame (first row), timings box plot (second row), false positive box plot (third row), false negative box plot (fourth row), and memory box plot (fifth row). The
star∗ depicts parallel CPU methods, while we use the dagger† for GPU methods. For many methods, the SquishyBall experiment run out of memory; we
discarded them and marked them in red. The box plot shows aggregated statistics: the box extends from the first to the last quartile, the line in the middle is
the median, and the lines (whisker) extend to the largest/smallest non-outlier point. Outliers are plotted as circles and defined as data points laying outside
the 1.5 times interquartile range.

8 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

Algorithm 1 Overview of our CCD algorithm.

1: function CCD(𝑀0, 𝑀1)

2: 𝐵 ←BuildBoxes(𝑀0, 𝑀1) ⊲ CPU, Section 6.1

3: 𝐶 ←BroadPhase(𝐵) ⊲ GPU, Section 6.2

4: 𝑡★←NarrowPhase(𝐶,𝑀0, 𝑀1) ⊲ GPU, Section 6.3

5: return 𝑡★

6: end function

and𝑀1. We use the CPU for this step as its running time is negligi-

ble. Additionally, we need to have access to the whole scene that

might not fit on GPU. When moving the boxes to GPU, we represent

them in single precision while ensuring that every input (in double

precision) is exactly contained in its box 𝑏𝑖 (Section 6.1). This phase

is fast and takes around 10% of the runtime (Figure 9).

Then we pass 𝐵 to our broad phase algorithm to discard any far

away candidate (Section 6.2). The broad phase produces a set of

𝑛 candidates intersection pairs 𝐶 = {(𝑙𝑖 , 𝑟𝑖) | 1 ≤ 𝑖 ≤ 𝑛}, where
every pair (𝑙𝑖 , 𝑟𝑖) indicates that the primitives in the boxes 𝑏𝑙𝑖 and

𝑏𝑟𝑖 potentially intersect. This stage takes about 50% of the runtime

(Figure 9). The main idea of our algorithm is similar to Sweep and

Prune [Baraff 1992; Cohen et al. 1995], but we vectorize the operation

and avoid assumptions on the number of intersections to avoid

memory allocation. In particular, SAP [Liu et al. 2010] uses the

length of the box as a heuristic to determine the number of threads

used to process a box; instead, we use a consumer queue which keeps
the work balanced. While there are similarities between SAP and

our algorithm, our version is conservative and is 3.76× faster on

average (Figure 3).

Finally, to obtain the time of impact 𝑡★, we run our narrow phase

algorithm using the collision candidates 𝐶 , and the input meshes

𝑀0 and𝑀1 (Section 6.3). The core idea is the same as in [Wang et al.

2021], but we redesigned the algorithm to avoid recursion and used a

worker queue paradigm tomake it GPU parallelizable. In comparison,

we implemented [Wang et al. 2021] in CUDA and observed that it

does not scale at all with multiple threads, due to branching, and

high-registry use, making it slower than its parallel CPU counterpart

implemented by Wang et al. [2021]. Note that, on both CPU and

GPU, we execute the narrow-phase using the same precision as the

input (e.g., double precision for all our experiments).
3

In Section 6.5 we show that our overall algorithm is conservative;
that is, it never misses collisions. Section 5 shows that our algorithm

has similar performance as state-of-the art and Section 7 details the

performance of our method.

6.1 Construction of the Boxes
To construct a tight single precision box 𝑏 = (𝑏𝑚, 𝑏𝑀) around a

primitive (i.e., a triangle, edge, or vertex), we first compute the

extent of the box 𝑏′𝑚, 𝑏′𝑀 in double precision using the min and

max of the coordinates of the primitive during its entire movement.

Because trajectories are linear, considering 𝑡 = 0 and 𝑡 = 1 is

sufficient. For instance, for a triangle, 𝑏′𝑚 is the minimum of the

𝑥,𝑦, 𝑧-coordinates of the three vertices, each at either 𝑡 = 0 or

3
Modern consumer GPUs have very limited support for double computation, but this

is not an issue for our purposes, as the narrow-phase is memory bound and the lower

number of double-precision ALUs does not affect the algorithm performance.

Fig. 4. The boxes 𝑏𝑖 , 𝑏 𝑗 , and 𝑏 𝑗+1 are sorted along the axis 𝑎. Since 𝑏𝑖 and
𝑏 𝑗 intersect, we append the pair to𝐶 and check 𝑏 𝑗+1. If 𝑏 𝑗+1 intersects 𝑏𝑖
on the axis 𝑎 (left) we append the (𝑏𝑖 , 𝑏 𝑗+1) to𝑄 ′ , if not (right) we discard
the pair. Because the boxes are sorted along the axis 𝑎, if 𝑏 𝑗+1 does not
overlap with 𝑏𝑖 , then 𝑏𝑘 for all 𝑘 > 𝑗 + 1 do not intersect 𝑏𝑖 , and we can
skip checking them.

𝑡 = 1. To conservatively convert 𝑏′𝑚 in single precision, for each

coordinate (e.g., 𝑥), we first round 𝑏′𝑚𝑥 to its nearest single precision

value and check if 𝑏𝑚𝑥 < 𝑏′𝑚𝑥 , in case it is not, we decrease 𝑏𝑚𝑥 to

its previous representable single precision value using the function

nextafterf4. The procedure for 𝑏𝑀 is similar. When running our

algorithm on GPU, we need to copy the boxes on the device; in our

experiments, this time, B2G, is negligible (Figure 9).

6.2 Broad-Phase
Our Sweep and Tiniest Queue (STQ) algorithm is based on the

Sweep and Prune algorithm [Baraff 1992; Cohen et al. 1995]. We

observe that on modern architectures, due to their memory layout

and a large number of ALUs that favor heavier computation with

structured memory access, brute-force checking all possible pairs

is not only easy to parallelize but extremely fast. Unfortunately,

this simple approach has a runtime quadratic with respect to the

number of pairs and cannot be applied to large scenes. To overcome

this limitation, we borrow ideas from the SAP to limit the average

complexity of our algorithm (Figure 5).

Algorithm. Our STQ starts by computing the variance 𝜎 of the

boxes’ centers 𝐵𝐶 and finding the most varying axis 𝑎 (Line 4) [Liu

et al. 2010]. We then sort the boxes 𝐵 along the axis 𝑎 based on their

minimum 𝑎 coordinate and initialize a queue 𝑄 that will hold pairs

of boxes that overlap on the 𝑎-axis. Since 𝑎 is the axis of maximum

variance, this will lead to the smallest possible queue among the

three axes if the data is uniformly distributed.

In the first step, for every box 𝑏𝑖 we check if it intersects its next

box 𝑏𝑖+1 along the 𝑎-axis; if it does, we append the pair (𝑏𝑖 , 𝑏𝑖+1) to
𝑄 (Line 8).

Then STQ extracts a pair (𝑏𝑖 , 𝑏 𝑗) from𝑄 and checks if it intersects

in the remaining two axes 𝑎𝑐 (Line 17). If they do, we append the

pair to the output 𝐶 (global). Finally we add the pair (𝑏𝑖 , 𝑏 𝑗+1) to
an output queue 𝑄 ′ if (𝑏𝑖 , 𝑏 𝑗+1) intersects along the 𝑎-axis (Line 21,

Figure 4).

Implementation Remarks. We remark that the STQ algorithm cre-

ates queues with at most 𝑘 − 1 elements, as each pass on 𝑄 pushes

at most one pair. Additionally, as not all pairs are always added,

the sizes are monotonically decreasing. On GPU, we exploit this

4
https://en.cppreference.com/w/c/numeric/math/nextafter

https://en.cppreference.com/w/c/numeric/math/nextafter

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 9

Algorithm 2 Overview of the broad-phase.

1: function BroadPhase(𝐵)

2: 𝐵𝐶 ← {𝑐 = (𝑏𝑚 + 𝑏𝑀)/2 | 𝑏 ∈ 𝐵} ⊲ Box centers

3: 𝜎 ← 𝜎 (𝐵𝐶) ⊲ Variance of the boxes centers

4: 𝑎 ← argmax𝑖∈{𝑥,𝑦,𝑧} 𝜎
𝑖

5: 𝑎𝑐 ← {𝑥,𝑦, 𝑧} \ 𝑎
6: 𝐵′ ←sort(𝐵, order𝑎) ⊲ in parallel

7: 𝑄 ← {}
8: for all 𝑖 ∈ {1, . . . , |𝐵′ | − 1} do
9: if 𝑏𝑎

𝐵′
𝑖

∩ 𝑏𝑎
𝐵′
𝑖+1

≠ ∅ then ⊲ Boxes intersect along 𝑎

10: 𝑄 ← 𝑄 ∪ (𝑏𝐵′
𝑖
, 𝑏𝐵′

𝑖+1
)

11: end if
12: end for
13:

14: while 𝑄 ≠ ∅ do
15: 𝑄 ′ ← {}
16: for all (𝑏𝑖 , 𝑏 𝑗) ∈ 𝑄 do
17: if 𝑏𝑎

𝑐

𝑖
∩ 𝑏𝑎𝑐

𝑗
≠ ∅ then

18: 𝐶 ← 𝐶 ∪ (𝑏𝑖 , 𝑏 𝑗)
19: end if
20: if 𝑏𝑎

𝑖
∩ 𝑏𝑎

𝑗+1 ≠ ∅ then
21: 𝑄 ′ ← 𝑄 ′ ∪ (𝑏𝑖 , 𝑏 𝑗+1)
22: end if
23: end for
24: 𝑄 ← 𝑄 ′

25: end while
26: return 𝐶

27: end function
28:

29: function order𝑎(𝑏𝑖 , 𝑏 𝑗)

30: return 𝑏
𝑚𝑎

𝑖
< 𝑏

𝑚𝑎

𝑗
⊲ Order by min value along 𝑎

31: end function

observation to pre-allocate the correct queue size and guarantee

that we will always have the necessary space. To efficiently par-

allelize STQ on GPU, we exploit shared memory per thread block.

In our experiments, the most efficient strategy consists of splitting

the sorted boxes 𝐵′ into𝑚 blocks containing 32 queries each (i.e.,

𝑚 = 𝑘/32). Since a warp consists of 32 threads, choosing a smaller

number will introduce unnecessary branching. Using larger thread

blocks can lead to more imbalanced workloads and longer runtime

of branching in the code. The GPU thread-block scheduler performs

well even with a larger grid size of thread blocks.

When running our algorithm on GPU, we need to prepare the

data for the narrow-phase; this requires:

(1) splitting the set𝐶 into edge-edge and vertex-face cases (SO),

(2) transforming the pairs in 𝐶 into narrow-phase data (CD),

(3) coping the vertex coordinates to the device (V2G).

Similar to copying the boxes to GPU, these intermediate stages are

negligible (Figure 9).

6.3 Narrow-Phase
Since our algorithm builds upon [Wang et al. 2021], we first provide

a self-contained overview of the original algorithm.

Summary of [Wang et al. 2021]. The algorithm uses inclusion

functions to detect collisions. It starts by constructing the interval

𝐼 = 𝐼𝑡 × 𝐼𝑢𝑣 ⊆ [0, 1]3, where 𝐼𝑡 = [0, 1] is the time interval and

𝐼𝑢𝑣 is the parameterization of the space. For a point-face query

𝐼𝑢𝑣 = {(𝑢, 𝑣) | 0 ≤ 𝑢, 𝑣 ≤ 1 ∧ 𝑢 + 𝑣 ≤ 1}, where 𝑢 and 𝑣 are the

triangle’s barycentric coordinates. For an edge-edge query 𝐼𝑢𝑣 =

[0, 1]2, where 𝑢 and 𝑣 are the first and second segment parameter.

Using 𝐼 , the algorithm defines the box 𝐵 = 𝐵𝐹 (𝑖) [Wang et al. 2021,

Equation (4)] that, if it intersects with a tolerance box 𝐶𝜖 [Wang

et al. 2021, Equation (5)]
5
, determines if the interval 𝐼 contains a root

or not. In case it does, the algorithm recursively splits 𝐼 into two

subintervals [Wang et al. 2021, Algorithm 2] until they are either

too small or completely contained in 𝐶𝜖 .

Algorithm. The method of Wang et al. [2021] can be trivially par-

allelized on a CPU by adding a parallel loop around the candidates

𝐶 . This strategy works well, but it is unfortunately not suitable with

GPU architectures, which for good performance requires all threads

to perform exactly the same operations and have similar memory

access patterns, and this is not the case for Wang et al. [2021], as

each query requires a different number and type of subdivisions.

To overcome this limitation, we observe that the core of the

algorithm processes intervals and not queries (Algorithm 3). We

can thus parallelize over interval splits instead of queries. This

observation leads to performing the same operations on every thread

independently from the candidate
6
.

We start by constructing, for every collision candidate 𝐶 , the

initial interval 𝐼 = [0, 1]3 (Line 2) and append them to the input

queue 𝑄 . We then process in parallel all intervals in 𝑄 and produce

the output intervals’ queue 𝑄 ′ (Line 6). In the end, we swap the

roles of the two queues (Line 15) and continue alternating until 𝑄

is empty.

Time of Impact. We modified how we process a single interval

(Line 20) with respect to [Wang et al. 2021] to account for the time

of impact. We first check if 𝐼 𝑙𝑡 (i.e., left-hand-side of the time interval

of 𝐼) is larger than the current time of impact 𝑡★. In this case, 𝐼 can

safely be skipped (Line 22). Then we proceed as in [Wang et al. 2021]

and, if the box 𝐵 constructed from 𝐼 does not intersect 𝐶𝜖 , 𝐼 can

be discarded as it does not contain a root (Line 26). Finally, if the

width𝑤 (𝐼) of 𝐼 is smaller than a user-provided tolerance 𝛿 (or if 𝐵

is contained in 𝐶𝜖), we report a collision by returning 𝐼 𝑙𝑡 (Line 29).

If it is not the case, we split 𝐼 into a left 𝐼 𝑙 and right 𝐼𝑟 interval and

return the current time-of-impact as optimal.

5𝐶𝜖 relies on floating-point operations to be compliant with the IEEE 754 standard,

which is the case for GPU (see https://docs.nvidia.com/cuda/floating-point/index.html).

Our algorithm is designed to account for the rounding error produced by these oper-

ations. Our floating-point filters are conservative in the sense that no rounding can

make them fail. Possible fused multiply-add (FMA) contractions would only make the

results of single operations more precise, and therefore our filters still work.

6
An additional subtle benefit of this algorithm is that it makes the GPU kernel shorter,

reducing the number of registers used, which is a common performance bottleneck on

GPUs, where each streaming multiprocessor (SM) has a very small pool of registers

available.

https://docs.nvidia.com/cuda/floating-point/index.html

10 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

Algorithm 3 Overview of the narrow-phase.

1: function NarrowPhase(𝐶,𝑀0, 𝑀1)

2: 𝑄 ←BuildIntervals(𝐶,𝑀0, 𝑀1)

3: 𝑡★←∞
4: while 𝑄 ≠ ∅ do
5: 𝑄 ′ ← {}
6: for all 𝐼 ∈ 𝑄 do ⊲ In parallel

7: 𝑡★, 𝐼 𝑙 , 𝐼𝑟 ←ProcessInterval(𝐼 , 𝑡★)

8: if 𝐼 𝑙 ≠ ∅ then
9: 𝑄 ′ ← 𝑄 ′ ∪ {𝐼 𝑙 }
10: end if
11: if 𝐼𝑟 ≠ ∅ then
12: 𝑄 ′ ← 𝑄 ′ ∪ {𝐼𝑟 }
13: end if
14: end for
15: 𝑄 ← 𝑄 ′

16: end while
17: return 𝑡★

18: end function
19:

20: function ProcessInterval(𝐼 , 𝑡★)

21: 𝑡 ← 𝐼 𝑙𝑡
22: if 𝑡 ≥ 𝑡★ then ⊲ Current interval is after 𝑡★

23: return 𝑡★, ∅, ∅
24: end if
25: 𝐵 ← 𝐵𝐹 (𝐼)
26: if 𝐵 ∩𝐶𝜖 = ∅ then ⊲ 𝐼 does not have collision

27: return 𝑡★, ∅, ∅
28: end if
29: if 𝑤 (𝐵) < 𝛿 or 𝐵 ⊆ 𝐶𝜖 then ⊲ Collision found

30: return 𝑡, ∅, ∅
31: end if
32: 𝐼 𝑙 , 𝐼𝑟 ← split(I) ⊲ 𝐼 gets refined

33: return 𝑡★, 𝐼 𝑙 , 𝐼𝑟

34: end function

Discussion. The algorithm has only two necessary synchroniza-

tions: 1) the update of 𝑡★ and 2) appending intervals to 𝑄 ′. We

update 𝑡★ using a mutex as atomicMin does not support floating-

point numbers. To efficiently append intervals, we keep track of

the size of 𝑄 ′ and use atomicAdd to increase the size counter when

appending new elements.

6.4 Batching
Running CCD on a GPU is particularly challenging as the amount of

required memory might easily exceed the device’s physical memory.

For instance, the queries necessary to run the scene in Figure 10

cannot fit in 12GB. While splitting the work in batches is possi-
ble for our method, it is challenging for other methods which use

more complex spatial data structures. While other methods could

have implemented batching, we are not aware of any existing CCD

implementation that has this feature.

As our method checks every possible pair, we can schedule their

execution in batches whose size depends on the available memory.

To ensure that we have enough memory, we measure the size in

bytes of the different data structures. Namely, let

• S𝑃 the size of the input parameters for the narrow phase

(56 bytes);

• S𝑄 the size of the narrow phase queries (24 doubles per

query);

• S𝐼 the size of the narrow phase interval (252 bytes);

• S𝑖 the size of two integers used to store a colliding pair (8

bytes).

We assume we can fit all boxes 𝑏𝑖 and the scene in CPU memory.

Our batching strategy requires storing all boxes (but not collision

pairs) on the GPU: this is not an issue in our experiments as we can

fit 97,612,893 boxes on 4GB ofmemory, an unlikely scenario even for

large scenes. In case the scene is larger, our code falls back to a CPU

implementation. Once we construct the boxes, we estimate the avail-

able memoryM using a cuda function. To ensure that we can run

our algorithm safely, we construct the output queue 𝐶 containing

the colliding pairs of maximum sizeS𝐶 = (M−S𝑃)/(S𝑄 +3S𝑖). To
compute the maximum size S𝐶 , we subtract the necessary memory

for storing parameters S𝑃 ; then we divide by the memory necessary

to run every query in the narrow phase. Every query requires S𝑖
bytes to store the results of the broad phase (vertex-face and edge-

edge mixed), 2S𝑖 bytes to conservatively separate the output of the

broad phase into the two primitive pair, and S𝑄 bytes to store the

input query for the narrow phase. This ensures that if the broad

phase appends at most S𝐶 results, we can always run the narrow

phase (even if the queue 𝑄 might overflow).

While running our broad phase, we append the colliding pair to

the𝐶 only if it does not overflow (in this case, we can run the whole

algorithm without batching). If it does, we stop the broad phase and

divide the input boxes into two batches and restart the algorithm

until all batches can append all pairs to 𝐶 .

In the narrow phase, the only problem that might occur is that

the working queue 𝑄 might overflow as we split the input intervals.

We allocate𝑄 of sizeM/S𝐼 , whereM is the available memory after

running the broad phase. If 𝑄 overflows, we discard the results and

re-run the narrow phase using half of the pairs 𝐶 . We repeat this

procedure until 𝑄 does not overflow. We note that we always keep

the most accurate time of impact when we batch

6.5 Guarantees
Our broad-phase and narrow-phase algorithms are both conservative.
Section 7.3 empirically confirms that the final time of impact is also

conservative (i.e., less or equal to the exact value) while providing a

measure of its difference from the ground truth.

Broad-phase. In our algorithm (Algorithm 2), any intersection

check amounts to only comparing floating point numbers. No other

operation and/or rounding is involved in the process, meaning that

intersection checks are all exact and 𝐶 contains all and only the

intersecting pairs. However, the boxes themselves might be slightly

larger than necessary due to the rounding from double to single

precision. Thus, our broad phase detection is conservative because
𝐶 might include intersecting pairs that would not intersect without

rounding. However, since the distortion is as small as machine

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 11

precision, these spurious pairs are too few (if any) to have any

perceivable impact on the overall performances.

Narrow-phase. As explained in Algorithm 3, if the two meshes

collide, our process returns a finite time of impact (Line 17). This

occurs if at least one root was found during the interval processing

(Line 30). In turn, this occurs if the condition on Line 29 is verified.

This condition is exactly the same as used in Wang et al.’s [2021]

algorithm. Our algorithm differs from Wang et al. [2021] because

some additional intervals are discarded, whereas some others are

added. However, we discard an additional interval only if the current

time of impact is finite (Line 22), meaning that a collisionwas already

detected. Stated differently, our additional discards cannot determine

a false negative. Similarly, Wang et al.’s [2021] method does not

process an interval that we process only if the algorithm exits before

having processed all the pairs and their intervals, which happens

only if a collision is detected. That is, our additional intervals cannot

determine a collision unless Wang et al.’s [2021] method does the

same. In essence, our algorithm returns a finite time of impact if and

only if Wang et al.’s [2021] algorithm reports a collision and, since

Wang et al.’s [2021] algorithm is conservative, we can conclude that

ours is equivalently conservative.

7 RESULTS

7.1 Comparison
Overall, our GPU algorithm is up to 20 times faster for larger scenes

than the best existing combination (BVH for broad-phase and CPU

parallel TI); 3 times faster for Armadillo-Rollers, 10 for Cloth-Ball,

1.6 for Cloth-Funnel, 22 for N-Bodies, and 17 Rod-Twist.

Broad Phase. As for the other BP methods (Figure 8), our method

has similar accuracy to any other algorithm. The performance of

our broad-phase methods is mostly independent of the scene: ours

is consistently among the fastest methods. Our method on GPU

is faster than BVH on large scenes (N-Bodies and Rod-Twist) and

has a comparable time for smaller ones. On CPU, our method has a

similar performance to the spatial hash; however, it does not require

tweaking the cell size. Our method uses slightly more memory than

BF, as it does not need to store any data structure.

Narrow Phase. ACCD is 3.5× faster than our method, but it fails

to detect collisions, making it not suitable for contact methods using

interior point optimization (e.g., IPC). TI is consistently slower than

our method (between 2.4 and 8.7 times faster).

7.2 Scaling
While our algorithm is inspired by a brute force approach which

has quadratic complexity with respect to the number of boxes, we

borrow ideas from the SAP to limit the average complexity of our

algorithm. Figure 5 shows that the run time of both of our algorithms

grows linearly with the number of boxes.

To assess the parallel scalability of our broad-phase method, we

run the last ten frames of Rod-Twist on CPU, varying the number

of threads from 1 to 32 (Figure 6). Our algorithm scales well with

respect to the number of threads: with 8 threads, the broad-phase

is 7.5 times faster, and it gets 22 times faster with 32 threads. Con-

structing the boxes scales the worst: 3.7 times faster with 8 threads

Fig. 5. Run time of our algorithm with respect to the number of queries. To
generate a varying number of queries, we select a random sub-sample of all
possible boxes from the last 10 frames of Rod-Twist.

Fig. 6. Strong scaling of our method for the last 10 frames of Rod-Twist. The
dashed lines show the perfect scaling.

and 6.5 faster for 32 threads. However, it is around one order of

magnitude faster than the broad-phase, making it negligible.

7.3 Time of Impact Validation and Accuracy
Taking a step size greater than the exact time of impact (TOI) will

lead to intersections, so we confirm our predicted TOI is less than

or equal to the symbolic expression (Section 4). This confirms our

method is conservative. Additionally (and not used to verify cor-

rectness), we estimate the error of our time of impact by evaluating

the difference using 128 bits of precision (Figure 7).

The mean error for all queries is 0.0023 with a standard devia-

tion of 0.018 and a median error of 1.03 × 10−6. We note that this

distribution varies between scenes (e.g., cloth-ball has a mean error

of 8.33 × 10
−6

compared to 0.032 for rod-twist). This indicates a

dependency between the types of contact and the accuracy of the

time of impact.

7.4 Different Architectures
We also run our method on different “workstation” hardware (Fig-

ure 8); two CPUs: CPU1 a consumer architecture (Intel
®
Core™

i7-5930K CPU @ 3.5GHz) and CPU2 a professional CPU (AMD

12 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

[0, 1e-10)

[1e-10, 1e-09)

[1e-09, 1e-08)

[1e-08, 1e-07)

[1e-07, 1e-06)

[1e-06, 1e-05)

[1e-05, 1e-04)

[1e-04, 1e-03)

[1e-03, 1e-02)

[1e-02, 1e-01)

[1e-01, 1]

0%

20%

40%

60%

80%

100% Armadillo-Roller Cloth-Ball Rod-T wist Cloth-Funnel N-Bodies

time of impact error

Fig. 7. Using the symbolic ground truth for the time of impact, we compute
an error per query per scene and plot them as a histogram in log scale.
The error is computed as the absolute difference between the earliest root
reported by the symbolic root finder and our code (the error is approximately
computed using 128 bits of precision). All TOIs computed by our method
are verified symbolically to be less than the ground truth.

Ryzen™ Threadripper™ PRO 3995WX 64-Cores @ 2.7GHz) and

two GPUs: GPU1 a consumer-grade card (NVIDIA
®
3080 Ti) and

GPU2 a professional-grade card (NVIDIA
®
v100). Using this naming

convention, the results in Section 5 are run on CPU2 and GPU1. For

every CPU run, we limit the number of threads to 12. We note that

for many computations, a CPU implementation on CPU2 has an ex-

ecution time comparable to a GPU implementation:
7
the hardware

is, however, expensive as CPU2 costs around ten times more than a

top-of-the-line GPU.

The narrow phase on GPU is faster than the broad phase (just

barely for the Rod-Twist and 9 times for the N-Bodies); on CPU, the

two phases are more comparable (narrow-phase is 3 times slower

on Rod-Twist and 3 times faster on Cloth-Funnel). The difference

comes from the fact that the narrow-phase on GPU is up to 80 times

faster than CPU, while the broad-phase peaks at 10 times faster. As

expected for our method CPU2 (orange) has a similar performance

to GPU1 (green).

Figure 9 shows the cutoff of the different phases of our algo-

rithm; the broad phase dominates the computation, in particular

on the slower CPU. For scenes with complex contacts (Rod-Twist

and N-Bodies) the narrow phase becomes more prominent. When

switching to a faster architecture (CPU1 to CPU2 and GPU1 to

GPU2), both phases obtain a similar speedup. The narrow phase

benefits more when switching from CPU to GPU. The other parts

of our algorithm (e.g., memory copy, allocation, etc.) are negligible.

7.5 Batching
To evaluate the overhead of our batching strategy (Section 6.4), we

artificially limited the available memory on the GPU between 1GB

and 12GB (Figure 10). As we decrease the memory, our algorithm

becomes slightly slower. For the narrow phase at 6GB, one of the

early batches finds a small time of impact, leading to all other chunks

to quickly terminate.

Table 2. Performance of our new CCD and broad phase for the unit tests of
Erleben [2018] in [Li et al. 2020, Figure 11], the five cube stack, mat-twist,
and mat-knives simulations. For tiny scenes the overhead of our method
worsens performance, but in general leads to a performance increase in
both the CCD and simulation as a whole. For larger scenes, the bottleneck
shifts to the linear solves and Hessian matrix assembly leading to a smaller
overall improvement of running time.

Scene #V #T
CCD Time (s) Total Time (s)

CCD

Speed-Up

Total

Speed-Up
SH+TI Ours SH+TI Ours

Spikes 5 2 0.01 0.73 0.12 0.90 0.01× 0.13×
Spike and Wedge 5 2 0.01 0.79 0.13 0.89 0.02× 0.14×
Spike in a Hole 5 2 2.47 4.65 2.93 5.29 0.53× 0.55×
Wedge in a Crack 6 3 5.11 6.17 5.75 7.17 0.83× 0.80×
Sliding Spike 5 2 0.82 0.62 0.86 0.73 1.31× 1.18×
Spike in a Crack 5 2 5.45 3.58 5.80 4.13 1.52× 1.40×
Cliff Edges 8 6 3.98 1.66 4.46 2.24 2.40× 1.99×
Internal Edges 8 6 6.31 2.57 6.93 3.38 2.45× 2.05×
Sliding Wedge 6 3 1.78 0.50 1.85 0.58 3.59× 3.21×
Wedges 6 3 7.57 1.95 7.81 2.33 3.88× 3.36×
5 Cubes (Figure 11) 40 30 34.3 5.88 36.0 7.52 5.83× 4.78×
Mat-Twist (Figure 12) 3.2K 9.1K 7.92 2.60 2567.06 2368.87 3.05× 1.08×
Mat-Knives (Figure 13) 3.2K 9.1K 86.1 25.2 178.1 146.7 3.42× 1.21×

8 SIMULATIONS
We utilize our GPU CCD algorithm inside the IPC algorithm [Li et al.

2020] implemented in PolyFEM [Schneider et al. 2019] by running

several simulations on CPU2 with 8 threads for the simulation and

GPU1 for the CCD (see Section 7.4 for a description of the architec-

tures). We note that IPC requires computing the distances between

primitives at the beginning of every time step, which we accelerate

using our STQ broad phase algorithm. We run all the unit tests

of Erleben [2018] presented in [Li et al. 2020, Figure 11] using the

original implementation (using a spatial hash for broad phase and

the parallel TI narrow phase CCD) and compare with our method

(Table 2).

We run the five-cube stack example (Figure 11) that contains

several resting contacts. Similar to the unit tests, as the meshes are

extremely coarse when using our method, the simulation is 4.5×
faster. When using denser meshes (Figure 12 has 9K tetrahedra)

and the elastic deformations become more challenging, the non-

linear elastic solver dominates the IPC runtime, and the speedup

provided when using our method becomes less prominent; only 8%

times faster overall. Our method naturally support CCD between

codimensional object (Figure 13); for this scene, we again see similar

speedups.

We also run the five-cube stack example (Figure 11), which con-

tains several resting contacts. Similar to the unit tests, as the meshes

are extremely coarse when using our method, the simulation is 4.5×
faster. In the mat-twist shown in Figure 12, the denser mesh with

more challenging elastic deformations causes the linear solver to

dominate the overall runtime, and the speedup provided when using

our method becomes less prominent (only 8% faster overall).

To stress-test our CCD algorithm, we show our method is able

to handle CCD between codimensional objects in Figure 13. In this

scene, we again see similar speedups as Figure 12 with a 21% speed-

up overall.

7
https://opendata.blender.org/

https://opendata.blender.org/

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 13

Fig. 8. Results of our method on the consumer architectures (CPU1 and GPU1) and the professional architectures (CPU2 and GPU2) for five different scenes
(columns). For each scene (Figure 2), we report the performance for every simulation frame (first row) and timings box plot (second row).

Armadillo-Rollers Cloth-Ball Cloth-Funnel N-Bodies Rod-Twist

0 20 40 60 80 100 120

CPU1

CPU2

GPU1

GPU2

NP V2G CD SO BP B2G CB

time (ms)

0 100 200 300 400 500 600 700

CPU1

CPU2

GPU1

GPU2

NP V2G CD SO BP B2G CB

time (ms)

0 10 20 30 40 50

CPU1

CPU2

GPU1

GPU2

NP V2G CD SO BP B2G CB

time (ms)

0 1000 2000 3000 4000 5000

CPU1

CPU2

GPU1

GPU2

NP V2G CD SO BP B2G CB

time (ms)

0 100 200 300 400 500 600

CPU1

CPU2

GPU1

GPU2

NP V2G CD SO BP B2G CB

time (ms)

Fig. 9. Cutoff of the runtime for every scene for our method on the different architectures. NP runs the narrow phase, V2G copies the vertices to the GPU; SO
splits the queries into vertex-face and edge-edge, BP is the broad phase; CD constructs the data list; B2G copies the boxes to the GPU; and CB constructs the
boxes. Section 5 details the different architectures.

Avoiding Time of Impacts Equal to Zero. An important caveat of

using a conservative CCD method inside the IPC algorithm is that

it should not produce a time of impact 𝑡★ of zero. A 𝑡★ of zero

causes the non-linear solver to stagnate because IPC uses the 𝑡★ to

determine the maximum step size allowable inside the optimization-

based implicit time-stepping. Additionally, IPC guarantees every

step results in an intersection-free state, so 𝑡★ cannot be zero (i.e.,

not initially intersecting).

An exact CCD method would provide this guarantee. However,

we use a conservativemethod, so even if the objects are not touching,

a naïve implementation can produce a time of impact of zero.

To avoid 𝑡★ = 0, we make slight modifications to Algorithms 1

and 3 (Appendix B). As part of the strategy to avoid 𝑡★ = 0, the

IPC algorithm uses a minimum separation in the CCD to prevent

taking a step that results in parts exactly touching. We choose

the minimum separation relative to the initial distance 𝑑0 between

the query’s primitives. We use 0.2𝑑0 in all our experiments. To

implement minimum separation CCD, we use the same strategy

as TI [Wang et al. 2021]: we enlarge the box 𝐶𝜖 by the minimum

separation distance.

9 CONCLUSION
We introduce a novel dataset that provides a way to check for the

correctness of CCD codes and their time of impact in different

settings.We believe it is a realistic and practical approach to evaluate

the conservativeness of CCD implementations, even if passing the

benchmark is not a formal proof of correctness. It helped us design

our algorithm; using it, we found counter-examples for other CCD

codes. The benchmark is easy to extend, and we plan to keep it up to

date and add more scenes and challenging queries in the following

years.

Based on the benchmark, we designed a novel scalable CCD algo-

rithm combining broad and narrow phase collision detection. Our

algorithm is provably conservative, and our implementation has

been tested on multiple combinations of recent operating systems

14 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

Fig. 10. Runtime of our algorithm for a scene with 13 billion queries (top)
for different amounts of memory (bottom). The original scene data and
renderings are courteous of Li et al. and were generated as part of [Li et al.
2020] using the IPC method.

Fig. 11. Several frames of the five-cube stack example. The whole scene has
only 30 tetrahedra and is, therefore, CCD bound. We see a 5.83× speed-up
in CCD and 4.78× overall compared to using SH and TI.

Fig. 12. Several frames of a mat-twist simulation utilizing our scalable
continuous collision detection (CCD) algorithm. We see a 3.05× speed-up
in the CCD and a 1.08× speed-up overall compared to using SH and TI.

and hardware architectures. Our algorithmic contribution specifi-

cally targets parallel architectures with high memory bandwidth

(and high latency), which have very different requirements than

traditional serial architectures. Our algorithm scales well to GPU

hardware: an NVIDIA
®
3080 Ti GPU (MSRP ∼1.2K USD) achieves a

speed comparable to a CPU server chip with 64 cores/128 threads

Fig. 13. Several frames of a codimensional simulation. The mat has 9K
tetrahedra, while the codimensional triangles are not deformable. We see
a 3.42× speed-up in the CCD and a 1.21× speed-up overall compared to
using SH and TI.

(MSRP ∼10K USD). We believe that our GPU algorithm could be

extended to run on multi-GPU. Our preliminary experiments show

that the broad phase becomes 2.3 times faster when using 4 GPUs

for the N-Bodies scene.

When integrated with the state-of-the-art solver IPC, our ap-

proach reduces the overall simulation time, which we believe is of

practical relevance to the graphics and simulation community. Our

implementation will be released on GitHub with the MIT license to

foster its adoption in academia and industry.

REFERENCES
David Baraff. 1992. Dynamic simulation of non-penetrating rigid bodies. Technical

Report. Cornell University.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Colli-

sions, Contact and Friction for Cloth Animation. ACM Transactions on Graphics 21,
3 (July 2002), 594–603.

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient geometrically exact

continuous collision detection. ACM Transactions on Graphics 31, 4, Article 96 (July
2012), 7 pages.

G. Capannini and T. Larsson. 2016a. Adaptive Collision Culling for Large-Scale Simula-

tions by a Parallel Sweep and Prune Algorithm. In Proceedings of the 16th Eurograph-
ics Symposium on Parallel Graphics and Visualization (Groningen, The Netherlands)

(EGPGV ’16). Eurographics Association, Goslar, DEU, 1–10.
Gabriele Capannini and Thomas Larsson. 2016b. Efficient Collision Culling by a

Succinct Bi-Dimensional Sweep and Prune Algorithm. In Proceedings of the 32nd
Spring Conference on Computer Graphics (SCCG ’16). Association for Computing

Machinery, New York, NY, USA, 25–32.

Gabriele Capannini and Thomas Larsson. 2018. Adaptive Collision Culling for Massive

Simulations by a Parallel and Context-Aware Sweep and Prune Algorithm. IEEE
Transactions on Visualization and Computer Graphics 24, 7 (2018), 2064–2077. https:

//doi.org/10.1109/TVCG.2017.2709313

Girolamo Cardano. 1545. Artis Magnae, Sive de Regulis Algebraicis Liber Unus.
Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav Ponamgi. 1995. I-

COLLIDE: An Interactive and Exact Collision Detection System for Large-Scale

Environments. In Proceedings of the 1995 Symposium on Interactive 3D Graphics
(Monterey, California, USA) (I3D ’95). Association for Computing Machinery, New

York, NY, USA, 189–ff.

Erwin Coumans and Yunfei Bai. 2016–2019. PyBullet, a Python module for physics

simulation for games, robotics and machine learning. http://pybullet.org.

Sean Curtis, Russ Gayle, Naga Govindaraju, Ilknur Kabul, Ming Lin, Simon Pabst,

Stephane Redon, Avneesh Sud, Min Tang, Sung-eui Yoon, Jieyi Zhao, and Dinesh

Manocha. 2012. UNC Dynamic Scene Benchmarks. http://gamma.cs.unc.edu/

DYNAMICB.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API for

shared-memory programming. Computational Science & Engineering, IEEE 5, 1

(1998), 46–55.

Kenny Erleben. 2018. Methodology for Assessing Mesh-Based Contact Point Methods.

ACM Transactions on Graphics 37, 3, Article 39 (July 2018), 30 pages.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.

Intersection-Free Rigid Body Dynamics. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 40, 4, Article 183 (July 2021), 16 pages.

Marco Hutter and Arnulph Fuhrmann. 2007. Optimized continuous collision detection

for deformable triangle meshes. (July 2007).

Lutz Kettner, Andreas Meyer, and Afra Zomorodian. 2016. Intersecting Sequences of

dD Iso-oriented Boxes. https://doc.cgal.org/latest/Box_intersection_d/index.html

https://doi.org/10.1109/TVCG.2017.2709313
https://doi.org/10.1109/TVCG.2017.2709313
http://pybullet.org
http://gamma.cs.unc.edu/DYNAMICB
http://gamma.cs.unc.edu/DYNAMICB
https://doc.cgal.org/latest/Box_intersection_d/index.html

Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm • 15

Byungmoon Kim and Jarek Rossignac. 2003. Collision prediction for polyhedra under

screw motions. Proceedings of the Eighth ACM Symposium on Solid Modeling and
Applications, 4–10.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential

Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM
Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4, Article 49 (July 2020),

20 pages.

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental

Potential Contact. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4,
Article 170 (2021).

Fuchang Liu, Takahiro Harada, Youngeun Lee, and Young J Kim. 2010. Real-time

Collision Culling of aMillion Bodies onGraphics Processing Units. ACMTransactions
on Graphics 29, 6 (Dec. 2010), 1–8.

Brian Vincent Mirtich. 1996. Impulse-Based Dynamic Simulation of Rigid Body Systems.
Ph. D. Dissertation.

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated to

design garments. In Computer Animation and Simulation. Springer, 177–189.
Stephane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002. Fast Continuous

Collision Detection between Rigid Bodies. Computer Graphics Forum 21 (May 2002).

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019.

Polyfem. https://polyfem.github.io/.

Ygor Rebouças Serpa and Maria Andréia Formico Rodrigues. 2019. Flexible use of

temporal and spatial reasoning for fast and scalable CPU broad-phase collision

detection using KD-Trees. In Computer Graphics Forum, Vol. 38. Wiley Online

Library, 260–273.

Ygor Rebouças Serpa and Maria Andréia Formico Rodrigues. 2020. Broadmark: A

Testing Framework for Broad-Phase Collision Detection Algorithms. Computer
Graphics Forum 39, 1 (2020), 436–449.

John M. Snyder. 1992. Interval Analysis for Computer Graphics. Computer Graphics
(Proceedings of SIGGRAPH) 26, 2 (July 1992), 121–130.

John M. Snyder, Adam R. Woodbury, Kurt Fleischer, Bena Currin, and Alan H. Barr.

1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved

Surfaces. In Proceedings of the 20th Annual Conference on Computer Graphics and
Interactive Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing

Machinery, New York, NY, USA, 321–334.

Min Tang, Young Kim, and Dinesh Manocha. 2009. C
2
A: Controlled Conservative

Advancement for Continuous Collision Detection of Polygonal Models. 849–854.

Min Tang, Young J. Kim, and Dinesh Manocha. 2010. Continuous collision detection for

non-rigid contact computations using local advancement. In 2010 IEEE International
Conference on Robotics and Automation. 4016–4021.

Min Tang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018a. PSCC: Parallel

Self-Collision Culling with Spatial Hashing on GPUs. Proc. ACM Comput. Graph.
Interact. Tech. 1, 1, Article 18 (July 2018), 18 pages.

Min Tang, Dinesh Manocha, Sung-eui Yoon, Peng du, Jae-Pil Heo, and Ruofeng Tong.

2011. VolCCD: Fast continuous collision culling between deforming volume meshes.

ACM Transactions on Graphics 30 (Jan. 2011), 111.
Min Tang, Ruofeng Tong, Zhendong Wang, and Dinesh Manocha. 2014. Fast and

Exact Continuous Collision Detection with Bernstein Sign Classification. ACM
Transactions on Graphics 33 (Nov. 2014), 186:1–186:8. Issue 6.

Min Tang, tongtong wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018b.

I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation.

ACM Transactions on Graphics 37, 6, Article 204 (Dec. 2018), 10 pages.
Daniel J Tracy, Samuel R Buss, and Bryan M Woods. 2009. Efficient large-scale sweep

and prune methods with AABB insertion and removal. In 2009 IEEE Virtual Reality
Conference. IEEE, 191–198.

Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. 1990. Geometric Collisions for

Time-Dependent Parametric Surfaces. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques (Dallas, TX, USA) (SIGGRAPH ’90).
Association for Computing Machinery, New York, NY, USA, 39–48.

Bolun Wang, Zachary Ferguson, Xin Jiang, Marco Attene, Daniele Panozzo, and Teseo

Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection.

Computer Graphics Forum (2022). https://doi.org/10.1111/cgf.14479

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele

Panozzo. 2021. A Large-Scale Benchmark and an Inclusion-Based Algorithm for

Continuous Collision Detection. ACM Transactions on Graphics 40, 5, Article 188
(Sept. 2021), 16 pages.

Wolfram Research Inc. 2020. Mathematica 12.0. http://www.wolfram.com

Xinyu Zhang, Minkyoung Lee, and Young J. Kim. 2006. Interactive Continuous Collision

Detection for Non-Convex Polyhedra. Vis. Comput. 22, 9 (sep 2006), 749–760.

Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim. 2007. Continuous

Collision Detection for Articulated Models Using Taylor Models and Temporal

Culling. ACM Transactions on Graphics 26, 3 (July 2007), 15–es.

Afra Zomorodian and Herbert Edelsbrunner. 2000. Fast Software for Box Intersections.

In Proceedings of the Sixteenth Annual Symposium on Computational Geometry (Clear

Water Bay, Kowloon, Hong Kong) (SCG ’00). Association for Computing Machinery,

New York, NY, USA, 129–138.

A SPATIAL HASH VOXEL SIZE
The performance and memory footprint of SH heavily depends on

the voxel size (Figure 14). We use 𝑣 = 2max(𝑑0, 𝑑1), with 𝑑0 the

average edge length and𝑑1 the average displacement as an empirical

heuristic for our experiments. Using smaller or larger voxels leads to

an increase in runtime (with large voxels being the worst); however,

too small voxels consume too much memory and eventually run

out of memory (for 𝑣/20).

B ZERO TIME OF IMPACT AND MINIMUM
SEPARATION

To avoid 𝑡★ = 0, we make slight modifications to Algorithms 1 and 3.

As in [Li et al. 2020], if Algorithm 1 return 𝑡★ = 0 we perform the

narrow-phase again but set the minimum separation to 0 and enable

a no zero ToI strategy.

This no-zero ToI strategy dictates that if 𝐼 𝑙𝑡 = 0, 𝐼 should always be

split (ignoring user tolerances and the maximum number of splits).

We note that under floating-point division this split might not be

possible, but this has not been encountered in practice and would

most likely require a degenerate case involving tiny distances (which

IPC does a good job of preventing thanks to its barrier potential

method of handling contacts). In the end, because the minimum

separation was disabled, the resulting 𝑡★ is multiplied by a scaling

factor less than 1 to avoid exactly touching after the step (we use

0.8 in our examples).

https://polyfem.github.io/
https://doi.org/10.1111/cgf.14479
http://www.wolfram.com

16 • David Belgrod, Bolun Wang, Zachary Ferguson, Xin Zhao, Marco Attene, Daniele Panozzo, and Teseo Schneider

Fig. 14. SH Voxel Size. We benchmark SH using three different values for the voxel size and plot the timing (top) and memory (bottom). We use a voxel size
of 𝑣/10, 𝑣, and 100𝑣, where 𝑣 is the heuristic size used throughout all of our experiments. We also experiment with smaller voxel sizes but run out of memory
for even 𝑣/20 (max 64GB) due to many duplicate collision candidates.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Datasets
	2.2 Broad-Phase
	2.3 Narrow-Phase

	3 Preliminaries
	4 Dataset Generation
	5 Comparison
	5.1 Broad-Phase
	5.2 Narrow-Phase

	6 Algorithm
	6.1 Construction of the Boxes
	6.2 Broad-Phase
	6.3 Narrow-Phase
	6.4 Batching
	6.5 Guarantees

	7 Results
	7.1 Comparison
	7.2 Scaling
	7.3 Time of Impact Validation and Accuracy
	7.4 Different Architectures
	7.5 Batching

	8 Simulations
	9 Conclusion
	References
	A Spatial hash voxel size
	B Zero time of impact and minimum separation

